
Structure Search and Stability Enhancement of Bayesian Networks

Hanchuan Peng and Chris Ding
Computational Research Division, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA, 94720, USA
Email: hpeng@lbl.gov, chqding@lbl.gov

Abstract
Learning Bayesian network structure from large-scale data

sets, without any expert-specified ordering of variables, remains
a difficult problem. We propose systematic improvements to
automatically learn Bayesian network structure from data. (1)
We propose a linear parent search method to generate candidate
graph. (2) We propose a comprehensive approach to eliminate
cycles using minimal likelihood loss, a short cycle first heuristic,
and a cut-edge repairing. (3) We propose structure perturbation
to assess the stability of the network and a stability-improvement
method to refine the network structure. The algorithms are easy
to implement and efficient for large networks. Experimental re-
sults on two data sets show that our new approach outperforms
existing methods.

1. Introduction
The rapidly increasing quantity of data in many data mining

fields allows a great opportunity to model and understand the
relationships among a large number of variables. Bayesian Net-
works (BNs) [13][6][8][1] provide a consistent framework to
model the probabilistic dependencies among variables, e.g. in
medical image mining [15]. A BN [6][8] is a Directed Acyclic
Graph (DAG) G = (V, E) that models the probabilistic dependen-
cies among a group of variables (nodes). The joint distribution
can be factorized into the product of conditional probabilities of
every variable given its parents: P({g}) = Πg∈VP(g|πg), where g
stands for a variable, πg is the parents of g; the directed edges
among nodes encode the respective conditional distributions.

Directly identifying the BN structures from input data D re-
mains a challenge. The problem is NP-hard [3][6]. Many heuris-
tic search methods have been proposed (for reviews see [8][1]). If
there is a predefined ordering of variables, the well-known K2
algorithm [6] can efficiently determine the structure. For many
applications where there is no sufficient knowledge to provide
such an ordering, the BN-learning methods, e.g. conditional in-
dependence test based method [2], often have at least O(n4) com-
plexity. Other Monte Carlo methods have even larger complex-
ity, e.g. the search method based on random-sampling and model
averaging in the space of ordering [7]. Clearly, an efficient algo-
rithm to identify BN structures, without requiring ordering of
variables, is particularly important. There exist several meth-
ods/software. For example, the WinMine software of Chickering
[4] has the strength to learn large BN structure. Cheng designed
PowerConstructor [[1]] and won data mining contest KDD-
Cup-2001.

We propose a new O(n2) algorithm to infer locally stable
Bayesian networks without requiring predefined ordering of vari-

ables or predefined thresholds to terminate the model search. Our
algorithm consists of three main steps. (1) We develop an effi-
cient algorithm to search optimal parents, which form a candidate
graph (See §2). (2) We propose a new graph-based method to
eliminate possible cycles in the candidate graph that would vio-
late the acyclic assumption of BNs (See §3). (3) We evaluate the
network stability using structural perturbation. The structural
perturbation can detect unstable local structures; an algorithm for
improving the stability is proposed (See §4).

We assume a uniform prior of the structure of G. The poste-
rior (log-likelihood) of G given the data D, ℓ(G) = logP(G|D) ∝
logP(D|G), is used to judge the optimality of G. The posterior
can be evaluated using different scores, including the Bayesian
score [6] and its variant [5], MDL [1], BDe [8], etc. In this paper,
we use the Bayesian score, but other scores can be equally well
adopted in our structure identification algorithms.

2. Candidate Graph
The candidate graph Gc is a directed graph containing impor-

tant associations of variables where the redundancy of associa-
tions should be minimized. Our approach is to identify the opti-
mal parent set for each node based on the Bayesian score ℓ. Here
our emphasis is on how to efficiently search for optimal parent
set, π = {g*

i , i=1,…,m}. The locally optimal parent set is similar
to dependency graph of Heckerman et al [9][11]; the difference is
that they used regression to determine the dependency while we
directly search based on the Bayesian score.

Our algorithm is an extension of K2 algorithm [6]. K2 uses a
simple incremental search strategy: it first searches for the best
singleton parent g*

1, i.e., g*
1

 = argmaxi ℓ(gi→g), and ℓ(gi→g) >
ℓ(g) + ℓ(gi). It then searches for further parent(s) to maximize the
score increase in each step, until no better score can be found.

We extend K2 in two directions. (a) We constrain the search
in the most probable space to reduce the computational complex-
ity. Note that once a parent or parents are found, many of the rest
nodes are rendered conditionally independent. Thus in searching
for the second parent g*

2, we do not need to search through all the
rest variables, Ω1={V \g*

1}; instead we need only search
Ω1

+ = {gi∈V | gi≠g*
1, ℓ(gi→g) > ℓ(gi) + ℓ(g)}. (1)

Note that Ω1
+ is obtained automatically when searching for g*

1.
Similarly, when searching for g*

3, we need only search Ω2
+, in-

stead of Ω2={V \{g*
1 , g*

2}}; etc. This restriction saves a large frac-
tion of the searched space.

(b) We systematically search a larger space than K2. In K2, g*
1

corresponds to the largest ℓ(gi→g). Denote the respective parent
set as π(1). We can search another set of parents beginning with
the second largest ℓ(gi→g), denoted as π(2). If π(2) leads to better

score than π(1), then we take π(2) as the final parent set. We call
this 2-max search. This can be extended to k-max search. Clearly,
the Bayesian score of π(k) increases monotonically with k, at the
expense of linearly enlarged complexity.

We call this modified method the K2+ algorithm. It has the
complexity O(αkmn), where α counts for the reduction using
Ω1

+, Ω2
+,…, Ωm

+ instead of Ω1, Ω2 ,…, Ωm (often Ωi
+ contains a

much smaller number of variables than Ωi). Accordingly, the
complexity to construct the whole candidate graph is O(n2).

3. Cycle Elimination
Since the candidate graph Gc is generated via local optimal

search, it is possible that Gc contains many cycles that violate the
basic acyclic assumption of BNs.

A simple approach is to enumerate all possible DAGs that
could emerge from Gc and select the one with the largest score.
However, this method is impractical due to its exponential com-
plexity. Approximation methods based on random edge cut [12]
have been studied. A heuristic decision-tree based approach has
also been studied in [11]. In this paper, we resolve this problem
via graph algorithmic approach. Our comprehensive approach
consists of three methods that can be implemented efficiently.

Any cycle must lie in a Strongly Connected Component
(SCC) of the graph. An efficient O(n) algorithm based on depth-
first search can locate SCCs in a directed graph. We first find all
the SCCs in Gc, and eliminate cycles within each SCC.

3.1 Bayesian Likelihood Loss Function
If a SCC contains one cycle, we can break one cycle at a time.

We break cycles based on loss function. For each edge gi→gj, we
define the loss as the reduction of Bayesian log-likelihood for gj
due to the loss of one of its parent

w(gi→gj) = ℓ(gj | π) − ℓ(gj | π \ gi). (2)
Note that w(gi→gj) ≠ w(gi←gj). Although mutual information
might be another possible choice as the loss, it does not reflect the
joint association between different parents and gj.

If a SCC contains several cycles, sometimes they share one or
more common edges, such as the cycles in Figure 1. For exam-
ple, in Figure 1(a) the edge g2→g3 is shared by the cycles C1231
(i.e. g1→g2→g3→g1) and C2342.

There are several criteria to break the cycles. (a) We can sim-
ply cut edges with the smallest loss. (b) We can identify the
common edges and cut the one shared by most cycles. In Figure 1
(b), cutting the common edge g2→g3 will eliminate two cycles.
(c) The loss function criterion indicates there could be better
choices. Suppose g1→g2 and g3→g4 are the edges with the mini-
mal loss in cycles C1231 and C2342. If the condition

 w(g1→g2) + w(g3→g4) < w(g2→g3) (3)
holds, then we break edges g1→g2 and g3→g4; otherwise, we
break the edge g2→g3.

Figure 1 (b) illustrates a more complicated SCC with four 3-
node cycles C2312, C2342, C2542, C2642. The edge g2→g3 is shared 2
times and the edge g4→g2 is shared 3 times. We start cycle elimi-
nation from the most-shared edge (i.e. g4→g2) and use a minimal-
likelihood-loss strategy similar to Eq.(3). If the edge g4→g2 is cut,
then only C2312 remains and we will further cut its minimal loss

edge; otherwise we use Eq.(3) to decide which edge(s) in cycles
C2312 and C2342 should be broken.

This minimal-likelihood-loss criterion is summarized as fol-
lows. If there is no nested cycle, for each cycle we break the edge
with the minimal loss. When several cycles nest among them-
selves, we identify the edge eij shared by most cycles and com-
pare its loss with the sum of the minimal loss edges in participat-
ing cycles; if breaking eij leads to less loss, we cut eij; otherwise
we cut the minimal loss edges in every participating cycle.

(a) (b) (c)
Figure 1. (a) A SCC with two 3-node cycles. (b) A SCC with
four 3-node cycles. (c) A SCC with a 3-node cycle and a 4-node
cycle. Multiplicities of nodes are shown in parentheses.

3.2 Short-Cycle-First Heuristic
Finding the set of cut edges with regarding to the minimal-

likelihood-loss criterion could be complicated due to the exis-
tence of many cycles and the large number of common edges
they share. We propose a short-cycle-first heuristic to minimize
the complexity (for both computation and implementation):

(a) In BNs, information propagates multiplicatively because
of the probability calculation. Along a fixed path of m edges, the
influence of the starting node on the ending node is P1P2⋅⋅⋅Pm
approximately. Therefore, in general, a long cycle violates the
acyclic assumption less severely than a short cycle. If a SCC con-
tains cycles of different lengths, our short-cycle first heuristic
breaks the 2-node cycle first, and the 3-node cycle second, etc. In
Figure 1 (c), we first break the 3-node cycle C2352. Afterwards, we
break the cycle C12341 if it still exists.

(b) When cycles of different lengths share edges, it is typically
more efficient to break the shorter cycle first. For example, sup-
pose two cycles Ca and Cb (with lengths a and b, respectively)
share one common edge, and the cut-edge-loss-function is homo-
geneous. Approximately there is 1/a chance to break the common
edge in Ca, and 1/b chance to break it in Cb. If a<b, then it is more
likely (i.e. 1/a > 1/b) that first breaking Ca (the shorter one) will
simultaneously break Cb.

3.3 Cycle Identification by Matrix Multiplication
Short-cycle-first heuristic can be efficiently implemented

through a matrix multiplication method. Let A be the adjacency
matrix of a SCC. Diagonal elements of A are zeros. We compute
Am with the smallest m such that nonzero elements appear at ma-
trix diagonal; with some elementary algebra, we can show that
(1) nodes corresponding to nonzero diagonal elements in Am must
involve in m-node cycles; thus finding these cycles are restricted
to the subgraph induced by these nodes; (2) the multiplicity of
node i (i.e. value of (Am)ii) equals the number of times a cycle
pass through node i (for example, in Figure 1 (a) and (b) the mul-
tiplicity of nodes are indicated by red numbers in parentheses).
(3) Starting from the node with the highest multiplicity using
breadth-first-search algorithm, restricting on the subgraph, we can

easily traverse all m-node cycles and identify the most-shared
edges. For example, in Figure 1 (b), we can start from g2 and
quickly identify the most-shared edge e42. We use the likelihood
loss criterion to break cycles. Note that A is usually very sparse
and the sparse matrix multiplications often involve much less
computation than dense matrixes.

After one or more edges are cut, we re-run the SCC-detection
algorithm to identify the new SCCs and the matrix multiplication
method to identify shortest remaining cycles. This is repeated
until all cycles are eliminated.

3.3 Repair of Local Structures

Once an edge gi→gj in the candidate graph Gc is cut, there is a
loss of the likelihood of ℓ(gj|πj) because now gj's parent set πj is
less optimal. Hence, we use K2+ parent-search to repair the par-
ent set of each node whose incident edges have been cut. The
repair is done locally, i.e., all other parents of gj are retained dur-
ing the repair of πj. In addition, the repair is subject to the acyclic
condition, i.e. the best replacement edge cannot cause cycles.

Suppose in cycle elimination, M edges are cut and the local
structures of the involved nodes need repair. We notice the first-
repaired local structures will give extra-constraints on the space
of the later-repaired local structures due to the acyclic condition
(i.e. potentially the search-space of the later-repaired local struc-
tures would be shrunk). By comparing the candidate graph Gc
and the DAG G returned from cycle elimination, we first locate
the nodes whose local structures need repair. We calculate the
likelihood loss of a node due to the cutting of incident edges. We
sort these loss values from large to small, and repair the nodes
according to this ordering. This maximal-loss-first heuristic is
consistent with the minimal-likelihood-loss criterion. Clearly,
during the course of repair, the DAG after each local repair will
always have a higher likelihood score than the DAG before this
local repair. This repair algorithm has the complexity of O(βn),
where β is the number of nodes whose parent-sets are repaired.

4. Structure Perturbation and Stability En-
hancement

To assess the quality of the obtained network G, we perform
local structural perturbations to assess its stability. Here we con-
sider the Edge Perturbation ("EP"), i.e., we attempt to eliminate
an edge eij = gi→gj to see if the Bayesian likelihood is improved.
A "brute force" perturbation is to simply cut eij. However, after eij
is cut, gj's parent-set is no longer optimal. For this reason, we use
the K2+ algorithm to find the new optimal parents for g2, exclud-
ing the cut edge (but keeping all other parents if any). We calcu-
late ∆ℓe

EP and the percentage of stable edges

)|(
)ˆ|(log)()ˆ(),(||

1

GDP
GDPGGr EP

eEeE
EP =−=∆∆Σ=

∈
llllδ , (5)

where Ĝ is the perturbed structure, δ(x) = 1 if x ≤ 0 and 0 other-
wise. The more negative ∆ℓe

EP, the more "stable" the edge e is.
rEP indicates the local stability of G. A stable G has rEP ~ 1.

By using perturbation, we can identify those unstable edges
whose replacements lead to better likelihood scores. We may
improve the network structure by replacing these unstable edges
with their replacements. The edge-stability-improvement algo-

rithm first sorts the ∆ℓe
EP of all unstable edges. Similar to the re-

pair algorithm in §3.3, it then goes through all unstable edges
following the sorted ordering (starting with the most unstable
edge). For a given unstable edge e, the optimal replacement
found in EP is first tried to see if there is cycle caused. If no, then
the optimal replacement is used; otherwise, the K2+ search algo-
rithm is invoked to search the best replacement (similar to §3.3,
the search is subject to the acyclic condition, and all other parents
of the current node are retained.). By applying the edge-stability-
improvement algorithm, the Bayesian likelihood score of G is
improved while the number of unstable edges is reduced.

Our goal is to detect and repair unstable edges to improve a
single structure. This differs from other edge quality assessments,
e.g. averaging over a large number of structures [14], where the
edge importance is not associated with a particular structure.

5. Experiments
We use two data sets in this paper. The first is the well-known

Alarm data set [6] (37 variables, 10000 samples). The intrinsic
ordering of these variables is not used since our major concern is
how to detect the network structure without the ordering informa-
tion. We use the Alarm data accompanying the PowerConstructor
software [2]. We compare our results with WinMine [4][11] (be-
cause it can generate DAGs without ordering of variables) and
the best/mean results of random-sampling method in the space of
variable ordering [7].

The second data set is a yeast genome [10] (481 real-valued
gene variables, 300 data points). The variables are discretized to
3-states via thresholding at µ±0.4σ (σ - standard deviation, µ -
mean). These states correspond to the over-expression, baseline,
and under-expression of genes.

Beside the Bayesian score, we also compute the (normalized)
data likelihood L based on the learned structure and conditional
probabilities. We further compute the cross-validated likelihood
(10-fold CV) LCV, which is a better indicator for generalization.

5.1 Results on Alarm Data Set
The results on the Alarm data set are shown in Table 1. Re-

sults of our algorithms, WinMine, and ordering-space-search, are
shown, together with those of the true Alarm structure and the
null model (i.e. without edges). The k-max search in K2+ clearly
improves the quality-measures ℓ, L, LCV and rEP (i.e. the 3-max
search results are better than the 1-max search results). The edge
stability algorithm of §3.3 clearly improves all the ℓ, L, LCV, and
rEP. rEP becomes 1 afterwards.

Compared to true model results, our best results (i.e. 3-max
with improved stability) are very close. Remember that the order-
ing of variables is assumed unknown, thus it is highly unlikely
that the true structure can be recovered from data. Hence, these
results indicate our network can model the data almost equivalent
to the true model, with a different network structure (57 edges in
our model versus 46 edges in the true model).

We run WinMine using three different κ values, 0.01 (default
value), 0.002, and 8e-12, to adjust the network to have the same
number of edges as our results or as the true model. The quality
metrics of these structures are not as good as our results.

When variables' ordering is unknown, one may generate many

random orderings, use K2 to learn structures, and select the best
ones [7]. We perform this ordering-space-search for 100 random
trials. Both the mean and best results are listed in Table 1. They
are substantially worse than both our and WinMine's results, indi-
cating it is hard to generate good models from random orderings
of variables, even at great computation expense.
Table 1. Results on the Alarm data set. (ℓ, L, LCV are all normalized by
nN; κ is the WinMine parameter controlling the complexity of network
structure. "ImpStab" means improving stability algorithm in §4.)

Learning (all data) CV (10-
fold) Method

Parent
Search
Method ℓ L rEP |E| LCV
1-max -0.2587 -0.2543 0.9123 57 -0.2554 Our method

(Before ImpStab) 3-max -0.2581 -0.2539 0.9298 56 -0.2550
1-max -0.2566 -0.2522 1.0000 56 -0.2533 Our method

(After ImpStab) 3-max -0.2562 -0.2519 1.0000 57 -0.2530
True Model -0.2555 -0.2517 0.9783 46 -0.2526

κ = 0.01
(Default) -0.2593 -0.2551 1.0000 57 -0.2561

κ = 0.002 -0.2593 -0.2551 1.0000 57 -0.2561
WinMine

κ = 8e-12 -0.2655 -0.2622 0.9783 46 -0.2630
Best results -0.2633 -0.2578 0.8730 63 -0.2592 Search of Ordering

Space
(100 trials) Mean results -0.2701

±0.0026
-0.2631
±0.0023

0.8765
±0.0521

74.0
±5.4

-0.2650
±0.0023

Null Model -0.5822 -0.5813 --- 0 -0.5815

5.2 Results on Yeast Gene Expression Data Set
Table 2 compares the results on the yeast gene data. In both

our BNs and WinMine's results, there are more than 1600 edges
for the 481 nodes. For learning, Table 2 shows that k-max search
in K2+ improves ℓ, L, and rEP. The edge-stability-improvement
algorithm leads to steady improvements in all quality-measures.

We also run WinMine for a variety of parameter κ. The best
results are obtained by setting κ to its maximal value, i.e. 1.0.
Table 2 shows that in the best case, WinMine results are worse
than that of 3-max, i.e. smaller ℓ, smaller rEP, and less generaliza-
tion strength LCV. It is interesting to see that the training likeli-
hood L of WinMine result is higher than that of 3-max, however
LCV of WinMine is lower than that of 3-max; this implies that the
best network of WinMine might overfit data slightly.

Table 2 also lists the time (on PIII 1G CPU) of each method.
A plus "+" in our results means the time spent for the current step
for edge stability improvement. (Our algorithms were imple-
mented in Matlab and C++, while WinMine was in C++). Our
method uses less than 16 minutes to generate an initial BN, and 1
hour or so to refine the network structure. In contrast, WinMine
takes about 4 hours to generate a network with the similar per-
formance. These timing results show that our methods are much
faster than WinMine, due to our algorithm's O(n2) complexity.

6. Discussions
A characteristic of the networks in our results is that they are

rather sparse, which partially explains the high local stability of
the obtained structures regarding to the perturbations. We use
local structural perturbations to systematically assess the roles of
individual edges in the network. Based on them, one could build
larger subnet-level perturbations using clustering, seed growing,
etc. This could help to detect sub-structures of BNs [16].

Acknowledgements: We thank Edward Herskovits for discussions on
Bayesian learning, David Maxwell Chickering for discussion on using
WinMine, and Dana Pe'er for providing the list of 481 genes. This work
is supported by Department of Energy, Office of Science, under contract
No. DE-AC03-76SF00098.
Table 2. Results on the Yeast gene expression data. b is the number
of iterations in stability enhancement.

Search Method
and Parameters Learning (All Data) CV (10-fold)

k-max b ℓ L rEP |E| T (min) LCV
0 -0.9770 -0.8269 0.6222 1326 9 -0.9420
1 -0.9691 -0.7831 0.8451 1517 +44 -0.9303
2 -0.9662 -0.7687 0.9426 1586 +25 -0.9255
3 -0.9654 -0.7640 0.9863 1611 + 8.7 -0.9242

1-max

4 -0.9651 -0.7627 0.9951 1620 + 1.8 -0.9237
0 -0.9710 -0.8019 0.7077 1433 16 -0.9338
1 -0.9654 -0.7689 0.8901 1583 +40 -0.9250
2 -0.9639 -0.7624 0.9579 1614 +27 -0.9226
3 -0.9635 -0.7612 0.9821 1620 +14 -0.9220
4 -0.9634 -0.7606 0.9889 1624 + 6.2 -0.9218

O
ur

 M
et

ho
d

3-max

5 -0.9631 -0.7588 0.9957 1634 + 0.09 -0.9212
κ ℓ L rEP |E| T (min) LCV

0.01 (Default) -1.0218 -0.9918 0.2868 272 57 -1.0063
0.50 -0.9916 -0.9373 0.4944 627 115 -0.9683
0.99 -0.9644 -0.7744 0.9064 1528 229 -0.9239
0.999 -0.9638 -0.7591 0.9468 1616 235 -0.9224 W

in
M

in
e

1.00 -0.9636 -0.7554 0.9494 1641 268 -0.9220
Null Model -1.1079 -1.0918 --- 0 0 -1.0987

References
[1] Buntine, W., "A guide to the literature on learning probabilistic networks

from data," IEEE Trans KDE, 8(2): 195-210, 1996.
[2] Cheng, J., Bell, DA, Liu, W., "Learning belief networks from data: an infor-

mation theory based approach," 6th ACM Int Conf on Information and
Knowledge Management, 1997.

[3] Chickering, D., Geiger, D., and Heckerman, D., "Learning Bayesian Net-
works is NP-Hard," MSR-TR-94-17, Microsoft Research, 1994.

[4] Chickering, D.M., "The WinMine toolkit," MSR-TR-2002-103, Microsoft
Research, 2002.

[5] Cooper, G.F., and Yoo, C., "Causal discovery from a mixture of experimental
and observational data," UAI-1999: 116-125, 1999.

[6] Cooper, G.F., and Herskovits, E., "A Bayesian method for the induction of
probabilistic networks from data," Machine Learning, 9: 309-347, 1992.

[7] Friedman, N., and Koller, D., "Being Bayesian about network structure: a
Bayesian approach to structure discovery in Bayesian networks," Machine
Learning, 2002.

[8] Heckerman, D., "A tutorial on learning with Bayesian networks," in M.I.
Jordan (Ed.) Learning in Graphical Models: 301-354, MIT Press, 2000.

[9] Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., and Kadie, C.
"Dependency networks for inference, collaborative filtering, and data visuali-
zation," J. Machine Learning Research, 1: 49-75, 2000.

[10] Hughe, T.R., et al. "Functional discovery via a compendium of expression
profiles," Cell, 102: 109-126, 2000.

[11] Hulten, G., Chickering, D.M., and Heckerman, D., "Learning Bayesian
networks from dependency networks: a preliminary study," AI & Statistics
2003: 54-61, 2003.

[12] Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.H., and Kuijpers, C.M.,
"Structural learning of Bayesian networks by genetic algorithms: a perform-
ance analysis of control parameters," IEEE Trans. PAMI, 18: 912-926, 1996.

[13] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference, San Mateo, CA: Morgan Kaufmann, 1988.

[14] Pe'er, D., Regev, A., Elidan, G., and Friedman, N., "Inferring subnetworks
from perturbed expression profiles," Bioinformatics, 17: 215S-224S, 2001.

[15] Peng, H.C., Herskovits E, and Davatzikos C. "Bayesian clustering methods
for morphological analysis of MR images," IEEE Int'l Symp on Medical Im-
aging: Macro to Nano: 875-878, 2002.

[16] Peng, H.C., and Ding, C., "An efficient algorithm for detecting modular
regulatory networks using Bayesian subnets of co-regulated genes," LBNL
Technical Report 53734, Aug 2003.

